Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations
نویسندگان
چکیده
Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of which is almost comparable to that due to CO2 (2.83 W m-2) increases since 1750. Our results thus highlight the necessity of realistic representation of snow albedo in the model and demonstrate the use of satellite-based snow albedo to improve model behaviors, which opens new avenues for constraining snow albedo feedback in earth system models.
منابع مشابه
A methodology for snow data assimilation in a land surface model
[1] Snow cover has a large influence on heat fluxes between the land and atmosphere because of its high albedo and insulating thermal properties. Hence accurate snow representation in coupled land-ocean-atmosphere global climate models has the potential to greatly increase prediction accuracy. To this end, a one-dimensional extended Kalman filter analysis scheme has been developed to assimilate...
متن کاملAn Improved Snow Scheme for the ECMWF Land Surface Model: Description and Offline Validation
A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and temporal scales) includes s...
متن کاملImplementation of a soil albedo scheme in the CABLEv1.4b land surface model and evaluation against MODIS estimates over Australia
Land surface albedo, the fraction of incoming solar radiation reflected by the land surface, is a key component of the Earth system. This study evaluates snow-free surface albedo simulations by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model with the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour L’Observation de la Terre (SPOT) albedo. We compa...
متن کاملControls on Northern Hemisphere snow albedo feedback quantified using satellite Earth observations
Variations in the strength of the current spring snow albedo feedback (SAF) over Northern Hemisphere land surfaces (NH) explain over one third of the 21 century temperature response to anthropogenic forcings in this region within global circulation model (GCM) projections. Observation based estimates of controls on SAF are needed to constrain the snow and albedo parameterizations in these model...
متن کاملAssessing Snow Albedo Feedback in Simulated Climate Change
We isolate and quantify the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change based on scenario runs of 17 climate models used in the IPCC 4th Assessment. The first factor is the dependence of planetary albedo on surface albedo, representing the atmosphere’s attenuation effect on surface albedo anomalies. It is potentially a major source of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015